Asymptotic Equivalence and Adaptive Estimation for Robust Nonparametric Regression
نویسندگان
چکیده
Asymptotic equivalence theory developed in the literature so far are only for bounded loss functions. This limits the potential applications of the theory because many commonly used loss functions in statistical inference are unbounded. In this paper we develop asymptotic equivalence results for robust nonparametric regression with unbounded loss functions. The results imply that all the Gaussian nonparametric regression procedures can be robustified in a unified way. A key step in our equivalence argument is to bin the data and then take the median of each bin. The asymptotic equivalence results have significant practical implications. To illustrate the general principles of the equivalence argument we consider two important nonparametric inference problems: robust estimation of the regression function and the estimation of a quadratic functional. In both cases easily implementable procedures are constructed and are shown to enjoy simultaneously a high degree of robustness and adaptivity. Other problems such as construction of confidence sets and nonparametric hypothesis testing can be handled in a similar fashion.
منابع مشابه
Asymptotic Equivalence of Nonparametric Autoregression and Nonparametric Regression
where (εi)i=1,...,n are i.i.d. random variables. The unknown autoregression function f is then the target of statistical inference and the development of efficient estimators is a natural task for theoretically oriented statisticians. On the one hand, it has been recognized for a long time that commonly used estimators in model (1) have the same asymptotic behavior as corresponding estimators i...
متن کاملAsymptotic Equivalence Theory for Nonparametric Regression With Random Design
This paper establishes the global asymptotic equivalence between the nonparametric regression with random design and the white noise under sharp smoothness conditions on an unknown regression or drift function. The asymptotic equivalence is established by constructing explicit equivalence mappings between the nonparametric regression and the white-noise experiments, which provide synthetic obse...
متن کاملAsymptotic Equivalence Theory for Nonparametric Regression with Random Design by Lawrence
This paper establishes the global asymptotic equivalence between the nonparametric regression with random design and the white noise under sharp smoothness conditions on an unknown regression or drift function. The asymptotic equivalence is established by constructing explicit equivalence mappings between the nonparametric regression and the whitenoise experiments, which provide synthetic obser...
متن کاملAsymptotic equivalence of spectral density and regression estimation
We consider the statistical experiment given by a sample y(1); : : : ; y(n) of a stationary Gaussian process with an unknown smooth spectral density. Asymptotic equivalence with a nonparametric regression in discrete Gaussian white noise is established. The key is a local limit theorem for an increasing number of empirical covariance coe cients.
متن کاملWavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables
We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008